Nazanin Zaker

Data Analyst

6080 Rivercrest Dr., Ottawa, ON, K1C 5R2

PROFESSIONAL EXPERIENCE

Part-time Professor (University Instructor)

Department of Mathematics and Statistics, University of Ottawa, ON

- Developing and delivering engaging lectures to more than 200 undergraduate students in various courses in ٠ mathematics such as Mathematical Methods, Calculus for Life Science, Calculus I, and Calculus II, some in class and some online.
- Planning, evaluating, and revising course content and course materials. .
- Lecturing and communicating effectively with students from diverse backgrounds. •
- Connecting students' coursework to real-world themes by bringing in a variety of examples in course material that bridge business and economics to mathematics.
- Honing written and communication skills through teaching hundreds of students. •

Data Analyst (Part-time)

Interactive Studios, Ottawa, ON

- Gathered and analyzed data from digital screens in shopping malls that were originally stored in MySQL database.
- Assisted in building analytic tools to manage data and streamline data analysis using Python and R.
- Conducted detailed analysis and research through real-time visualization tools such as Tableau, Python, and R to • provide business insights to assist the project manager with the successful implementation of projects.
- Ensured provision of appropriate analytical support and outcome recommendations for key stakeholders. •
- Examined documents and reports and presented findings in PowerPoint and Excel. •

Research Assistant (Mathematical Ecology)

University of Ottawa, ON

University of Glasgow, Scotland

- Collected data and conducted detailed data analysis to model the problem and to identify variations and trends. Researched about how to model population dynamics via reaction-diffusion equations in a heterogeneous landscape
- with a discontinuity at the interface, and then proved the existence and uniqueness of solutions by semigroup theory.
- Researched about the steady-state problem of the time-dependent model and proved the existence and uniqueness of positive, asymptotically stable steady-state solutions.
- Researched about the system of predator-prey model and cyclic population.
- Studied Turing-pattern formation on patchy landscapes to analyze diffusion-driven instability conditions by using the technique of homogenization to derive spatially homogeneous equations.
- Illustrated the results with statistical analysis and numerical simulations in MATLAB and R.
- Collaborated with team members to discuss the results of the research.

EDUCATION

Ph.D. in Applied Mathematics (Mathematical Ecology)

University of Ottawa, ON Supervisor: Frithjof Lutscher Thesis: Population dynamics in patchy landscapes: steady states and pattern formation

Academic Research Opportunity

University of Glasgow, Scotland Supervisor: Christina Cobbold

Feb. 2020 – Mar. 2020

Sep. 2016 – Oct. 2021

Jan. 2019 – Present

(613) 400-9049

nazanin.zaker89@gmail.com linkedin.com/in/nazaninzaker

> Sep. 2016 – Oct. 2021 Feb. 2020 – Mar. 2020

Jul. 2019 – Mar 2021

Nazanin Zaker

M.Sc. in Applied Mathematics (Game Theory)

University of Tehran, Iran <u>Supervisor</u>: Mehdi Reza Darvishzadeh <u>Thesis</u>: A cooperative stochastic differential game and management of trans-boundary industrial solution

B.Sc. in Applied Mathematics

University of Tehran, Iran

SKILLS

- Python (NumPy, Pandas, Matplotlib, Seaborn)
- R studio
- Tableau
- SQL
- MATLAB/GNU Octave
- Platforms: Linux/ Windows
- Mathematica
- Microsoft Office Suite: Excel, PowerPoint, Word, Outlook, and SharePoint
- LaTeX
- Applied Mathematics/ Mathematical modeling
- Analyzing data
- Data visualization
- Statistics modeling

PEER-REVIEWED PUBLICATIONS

- N. Zaker, L. Ketchemen, and F. Lutscher. The effect of movement behavior on population density in patchy landscapes. Bulletin of Mathematical Biology, 2019, 82(1): 1.
- N. Zaker, C. A. Cobbold, and F. Lutscher. The effect of landscape fragmentation on Turing-pattern formation. Mathematical Biosciences and Engineering, 2022, 19(3): 2506-2537.

PRESENTATIONS

The effect of landscape fragmentation on Turing pattern formation

The Society for Mathematical Biology Annual Meeting (SMB), June 2021 The Second Joint SIAM/CAIMS Annual Meeting (AN20), July 2020

The effect of movement behavior on population density in patchy landscapes

The Canadian Society of Applied and Industrial Mathematics Annual Meeting (CAIMS), June 2021 The Canadian Mathematical Society (AARMS – CMS Student Poster Session), June 2020 The Society for Mathematical Biology Annual Meeting (SMB), July 2019 Sep. 2011 - Feb. 2014

Sep. 2007 - Jul. 2011